IS MARS SEISMICALLY ACTIVE?

OBJECTIVE OF FUTURE MARS MISSIONS

Emplacing Seismic Network
Determine Internal Structure (Crust, Mantle, Core?)

SHOULD BE MORE SEISMICALLY ACTIVE THAN MOON/LESS THAN EARTH

Geologically more active than Moon/Less than Earth Moon 28 high-frequency teleseisms in 5 years (equivalent to tectonic earthquakes/not tidally triggered) Young fault scarps, recent volcanic activity, uncompensated loads - Tharsis

Viking Results

2 Seismometers; only VL 2 uncaged (Utopia Planitia)
no marsquakes (19 months, listened ~3 months)
Could have detected about magnitude 6 teleseism (mag 5 < 1000

km)

Note that VL 2 is ~5,000 km from Tharsis

Mars Could be Seismically Active - How Active?

Seismic Moment

 $Mo = \mu sA$

 μ = rigidity s = slip on fault A = Area of fault

On Mars - know enough about fault area, displacement and history to estimate seismicity through time

ASSUMPTIONS/CALCULATIONS

USED DIGITIZED DATA SETS

SIMPLE GRABENS (I/2 during each period)

6841 Grabens; total length 354,556 km (Watters and Maxwell, 1983)

WRINKLE RIDGES (LN/EH)

1845 WR; total length 32,117 km (Watters and Maxwell, 1983)

MEASURED

VALLES MARINERIS (1/2 during each period)

40 km deep; 4-8 km slip (from surface topography)

MA/UA 20 faults each 50 km long; 100 m slip Lucchitta

TEMPE TERRA RIFTS

1470 km long; 10 km deep; 0.5 km slip (from surface topography)

THAUMASIA GRABEN/RIFT

1200 km long; 40 km deep; 1.5 km slip (from surface topography)

ALBA GRABENS

5-10 km deep; 0.2-0.5 km slip (from surface topography)

ALL MIDDLE/UPPER AMAZONIAN GRABENS

Caldera Fault Lengths (Olympus, Ascreaus, Arsia, Pavonis Mons)

Depths (10 km) from Zuber & Mouginis-Mark (1990) and Thomas et al. (1990) Slips from Mouginis-Mark (1990) and Pike (1978) from surface topography Fernandina Caldera Collapse, Galapagos 1968 occurred by equivalent seismic process (Filson et al., 1973)

MOMENT RELEASE TODAY

LATE AMAZONIAN

Most Likely Estimate is 1.3x10²² dyne-cm/yr for past 250 m.y. (assuming Hartmann et al., crater-age correlation)

EXPONENTIAL DECAY IMPLIES MARS IS AS SEISMICALLY ACTIVE TODAY

THIS ESTIMATE SIMILAR TO THEORETICAL LITHOSPHERIC

COOLING (Phillips and Grim, 1991)

3.6x10²³ dyne-cm/yr

when adjusted for

4 times thicker seismogenic lithosphere

7 times greater μ

whole planet versus western hemisphere only

Expect Surface Faulting Estimate to be Smaller only includes faults that break the surface

SEISMICITY TODAY

ON EARTH SUBSTANTIALLY MORE EARTHQUAKES OCCUR WITHOUT SURFACE BREAKS

IF ABOUT 100 TIMES MORE

THEN About #/yr
2 (5>m>4)
15 (4>m>3)
115 (3>m>2)

TO CALIBRATE

PERFORMED SIMILAR CALCULATION FOR THE MOON

17,000 km Grabens formed 3.8-3.6 Ga 26,000 km Mare Ridges formed 3.6-3.0 Ga

Predict Moment 1000 Times Less Than Measured

(Extrapolation of Moment from Tectonic Features)

IF ESTIMATES FOR MARS SIMILARLY LOW

Of Order 100 Marsquakes > m=3 per year About 2 > m=5/yr

DISTRIBUTION OF EARTHQUAKES

log N = a-bm

b = slope

log Mo = A+Bm

 $log N (m < N < m^*) = log[Mo(B/b-1)] + (m^*-m)b - (Bm^*+A)$

where m* is largest earthquake

For Intraplate Oceanic Earthquakes

b = 0.9

A = 11.71

B = 2.35

for body-wave m

(Bergman, 1986; Bergman and Solomon, 1980)

SEISMICITY TODAY

ASSUME LARGEST MARSQUAKE EQUIVALENT TO m=6 EARTHQUAKE BASED ON

Largest Moonquake (Oberst, 1987; Nakamura, 1980)

Largest Intraplate Oceanic earthquake (Bergman, 1986)

Smallest Teleseismic Marsquake Detectable by VL 2 (Anderson et al., 1977; Goins and Lazarewicz, 1979)

RECURRENCE INTERVALS

$$m = 6.5 5.4 4.3 3.2$$

435 yr 55 yr 7 yr 1 yr

LIKELY MINIMA

ALSO

Equivalent Magnitude 4 Earthquake on Mars similar to a Magnitude 5 Earthquake Likely Teleseismic Event on Mars

AND ...

MOMENT FREQUENCY

 $N(M_{\odot}) = aM_{\odot}^{-b}$

 $\Sigma M \circ = [ab/(1-b)] (M \circ^{max})^{1-b}$

assume b = 0.67 (Bergman) $M_0^{max} = 10^{26}$ dyne-cm
solve a for measured ΣM_0

 $N(M_0, M_0 + \Delta M_0) = a[M_0 - b - (M_0 + \Delta M_0) - b]$

log	Terre	Recurrence	Recurrence
Moment	strial	interval	interval for
	magn	from	entire
	itude	surface	lithosphere
		faulting	_
26.5	6.7	35,587 yr	356 yr
25	5.8	4,484 yr	4.5 yr
23.5	4.9	565 yr	6.8 mo
22	4	71 yr	0.9 mo
20.5	3.1	9 yr	3.3 dy
19	2.2	1 yr	9.8 hr
17.5	1.3	52 dy	1.2 hr